Chapter 8 Prerequisite Skills

Linear Relations
1. Make a table of values and graph each linear function.
 a) \(y = 2x - 3 \)
 b) \(y = -3x + 5 \)
 c) \(2x + 6y = 12 \)
 d) \(3x + 7y = 21 \)

2. Find the x- and y-intercepts of each linear function.
 a) \(y = -2x + 5 \)
 b) \(y = 5x + 20 \)
 c) \(2x - 4y = 12 \)
 d) \(3x + 6y = 18 \)

3. Graph each line.
 a) slope = -3; y-intercept = 2
 b) slope = 2; y-intercept = -5
 c) slope = \(-\frac{1}{2}\), through (-5, 8)
 d) slope = 4, through (-2, -5)
 e) \(x - 3 = 0 \)
 f) \(4y + 16 = 0 \)

Solving Linear Systems
4. Determine the coordinates of the point of intersection of each linear system.
 a)
 ![Graph](image1)
 b)
 ![Graph](image2)

5. Solve each linear system.
 a) \(3x + 2y = 9 \quad x - 2y = 7 \)
 b) \(8x + 5y = 9 \quad 6x + 9y = 5 \)
 c) \(x + 3y = 5 \quad -x - 7y = 3 \)
 d) \(9x + 5y = 53 \quad 5x - 6y = -32 \)

Writing Equations of Lines
6. Write the equation of each line.
 a) parallel to \(3x - y + 7 = 0 \) with y-intercept 4
 b) parallel to \(2x + 3y = 9 \) and through P(-1, 6)
 c) perpendicular to \(3x + 5y = 8 \) with the same y-intercept as \(5x - 3y = 12 \)
 d) perpendicular to \(2x + 3y = 5 \) and through Q(2, -7)

Dot and Cross Products
7. Use \(\vec{a} \cdot \vec{b} \) to determine if \(\vec{a} \) and \(\vec{b} \) are perpendicular.
 a) \(\vec{a} = [2, -1] \), \(\vec{b} = [-1, 3] \)
 b) \(\vec{a} = [1, 2] \), \(\vec{b} = [4, 5] \)
 c) \(\vec{a} = [1, 1] \), \(\vec{b} = [-1, 1] \)
 d) \(\vec{a} = [2, 3, 1] \), \(\vec{b} = [1, 2, -8] \)
 e) \(\vec{a} = [1, 2, 3] \), \(\vec{b} = [3, -4, 2] \)
 f) \(\vec{a} = [-1, 3, 4] \), \(\vec{b} = [1, 3, 5] \)

8. Find \(\vec{a} \times \vec{b} \).
 a) \(\vec{a} = [3, -2, 7] \), \(\vec{b} = [-1, 4, -5] \)
 b) \(\vec{a} = [-5, 6, -7] \), \(\vec{b} = [2, -7, 4] \)

9. Find a parallel vector and perpendicular vector to each given vector.
 a) \(\vec{a} = [1, -2] \) \quad b) \(\vec{b} = [5, 7] \)
 c) \(\vec{c} = [3, -2, 5] \) \quad d) \(\vec{d} = [-2, 7, -1] \)

10. Find the measure of the angle between the vectors in each pair.
 a) \(\vec{a} = [2, 5] \), \(\vec{b} = [3, -1] \)
 b) \(\vec{a} = [9, 12] \), \(\vec{b} = [-11, 15] \)
 c) \(\vec{a} = [1, -2, 3] \), \(\vec{b} = [4, -3, 2] \)
 d) \(\vec{a} = [5, -3, 2] \), \(\vec{b} = [1, 0, 4] \)
8.1 Equations of Lines in Two-Space and Three-Space

1. Write a vector equation for a line given each direction vector \(\vec{m} \) and point \(P_0 \).
 a) \(\vec{m} = [2, -7], P_0(9, 4) \)
 b) \(\vec{m} = [-1, 5], P_0(3, 7) \)
 c) \(\vec{m} = [2, -3, 5], P_0(8, -11, 2) \)
 d) \(\vec{m} = [-3, 4, 7], P_0(7, -1, 4) \)

2. Write a vector equation of the line that passes through each pair of points.
 a) \(A(2, 3), B(7, 1) \)
 b) \(A(5, -1), B(-2, 7) \)
 c) \(A(4, -3, 1), B(2, -3, 7) \)
 d) \(A(5, 6, -1), B(0, -3, 2) \)

3. Determine if each point \(P \) is on the line \([x, y] = [3, 1] + t[2, 5] \).
 a) \(P(12, 36) \)
 b) \(P(-7, 26) \)
 c) \(P(1, 6) \)
 d) \(P(-3, 15) \)

4. Write the parametric equations for each vector equation.
 a) \([x, y] = [7, 3] + t[2, 5] \)
 b) \([x, y] = [-1, 4] + t[8, -9] \)
 c) \([x, y, z] = [0, 4, -7] + t[3, -4, 1] \)
 d) \([x, y, z] = [7, 5, -4] + t[-2, 1, 3] \)

5. Write a vector equation for each line, given the parametric equations.
 a) \(x = 2 - 4t \)
 \(y = 1 - 5t \)
 b) \(x = 8 - 9t \)
 \(y = 3 \)
 c) \(x = 4 + 3t \)
 \(y = 7 - 2t \)
 \(z = 1 + t \)
 d) \(x = 4t \)
 \(y = 5 - 9t \)
 \(z = -3 \)

6. Given each set of parametric equations, write the scalar equation.
 a) \(x = 3 + 4t \)
 \(y = -1 - 5t \)
 b) \(x = 2 + 8t \)
 \(y = -5 + 7t \)

7. Write the scalar equation of each line given the normal vector \(\vec{n} \) and point \(P_0 \).
 a) \(\vec{n} = [4, 1], P_0(3, -5) \)
 b) \(\vec{n} = [1, -3], P_0(4, 3) \)
 c) \(\vec{n} = [-2, 6], P_0(2, -1) \)
 d) \(\vec{n} = [7, 0, 1], P_0(-1, 5, -2) \)
 e) \(\vec{n} = [-3, 4, 1], P_0(-7, -2, 0) \)

8. Write a vector equation and the \(\vec{m} \) parametric equations of a line going through the points \(A(7, 8, -3) \) and \(B(-2, 3, 5) \).

9. Determine which points are on the line \([x, y, z] = [3, 1, -4] + t[2, 0, 5] \).
 a) \((-5, 1, -24) \)
 b) \((19, 1, 37) \)
 c) \((9, 1, 11) \)
 d) \((-17, -1, -33) \)

10. Determine the vector equation of each line.
 a) \(\) parallel to the \(y \)-axis and through \(P_0(2, -7) \)
 b) \(\) parallel to \([x, y] = [3, -1] + t[3, 4] \) and through \(P_0(-2, 4) \)
 c) \(\) perpendicular to \([x, y] = [2, -1] + t[5, 3] \) with \(x \)-intercept 3
 d) \(\) through \(P_0(-1, -7, 7) \) and perpendicular to \([x, y, z] = [1, -7, 3] + t[4, -1, 2] \)
8.2 Equations of Planes

1. Does each point lie on the plane
 \[3x - 5y - 6z = 12 \]?
 a) A(0, 0, -2)
 b) B(1, 1, -2)
 c) C(1, -3, 1)
 d) D(-6, 0, 1)

2. Find the x-, y-, and z-intercepts of each plane.
 a) \[2x - 3y + 6z = 12 \]
 b) \[x + 7y + 8z = 56 \]
 c) \[5x - 3y + 15z = 15 \]
 d) \[4x - 8z = 16 \]

3. Write the parametric equations of each plane given its vector equation.
 a) \[[x, y, z] = [3, -1, 2] + t[4, -2, 3] + s[5, 1, 0] \]
 b) \[[x, y, z] = [0, 8, 7] + t[1, 0, -3] + s[1, -4, 7] \]
 c) \[[x, y, z] = [3, 6, -4] + t[4, -8, 5] + s[8, -9, 5] \]

4. Write the vector equation of a plane given its parametric equations.
 a) \[x = 1 - 9t + 4s \]
 \[y = 8 - 7t + s \]
 \[z = -1 - 3t + 2s \]
 b) \[x = 4 - t - s \]
 \[y = 3 + 4s \]
 \[z = 2t \]
 c) \[x = 4 + t \]
 \[y = 3 - s \]
 \[z = 1 \]

5. Determine if each point is on the plane
 \[[x, y, z] = [-3, 2, 4] + t[1, -3, 5] + s[-2, 1, 0] \].
 a) P(5, -7, 13)
 b) P(-6, 1, 9)
 c) P(-5, 4, -6)
 d) P(-10, 9, -10)

6. Determine the x-, y-, and z-intercepts of each plane.
 a) \[[x, y, z] = [1, -3, 2] + t[4, -3, 5] + s[-1, 7, 0] \]
 b) \[[x, y, z] = [9, -7, 4] + t[0, 3, -1] + s[5, -1, 1] \]

7. Write a vector equation for each plane.
 a) contains the origin; has direction vectors \(\vec{a} = [2, -1, 7] \) and \(\vec{b} = [3, 5, 2] \)
 b) contains the points D(1, -2, 3), E(5, -1, 8), and F(3, 9, 2)
 c) contains the point \(P_0(2, -1, 5) \); parallel to the \(xy \)-plane
 d) has y-intercept -7; parallel to the plane defined by the parametric equations
 \[x = 7 + 3t \]
 \[y = 6 + 2t - 5s \]
 \[z = 1 - 8t + 3s \]

8. Write a scalar equation of the line that goes through the point (5, 2, 4) and is perpendicular to both
 \[[x, y, z] = [-8, 5, 7] + t[-2, 8, 7] \] and
 \[[x, y, z] = [1, -3, 2] + t[9, -1, 3] \].

9. Determine the vector equation of the plane that contains the points A(2, -1, 4), B(-3, 4, 5), and C(8, -1, 6).
8.3 Properties of Planes

1. Determine if each point lies on the plane
 \(2x - 3y + 7z - 1 = 0 \).
 a) \((-1, -1, 0)\)
 b) \((-1, 1, 1)\)
 c) \((0, 2, 1)\)
 d) \((2, -1, -1)\)

2. Write the scalar equation of each plane given the normal \(\mathbf{n} \) and a point \(P \) on the plane.
 a) \(\mathbf{n} = [1, -2, 3] \)
 \(P (3, 1, 0) \)
 b) \(\mathbf{n} = [7, 8, -9] \)
 \(P (-1, 1, 1) \)
 c) \(\mathbf{n} = [3, -7, 2] \)
 \(P (-2, 5, -3) \)
 d) \(\mathbf{n} = [-2, 1, 5] \)
 \(P (1, 2, 3) \)
 e) \(\mathbf{n} = [1, -3, -4] \)
 \(P (-2, 5, 7) \)
 f) \(\mathbf{n} = [0, -3, 5] \)
 \(P (8, -7, 3) \)

3. Find two vectors normal to each plane.
 a) \(4x - 7y + 2z - 5 = 0 \)
 b) \(-9x + 5y - 4z - 1 = 0 \)
 c) \(7y + 6x + 3 = 0 \)
 d) \(3x - 8z = 0 \)
 e) \(x + 4y = 6z - 11 \)
 f) \(x = 4 \)

4. Write a scalar equation of each plane, given its vector equation.
 a) \(\mathbf{x} = \mathbf{a} + t\mathbf{d} \)
 \(\mathbf{a} = [7, -3, 4] \) and \(\mathbf{d} = [-1, -2, -3] \)
 b) \(\mathbf{x} = \mathbf{a} + t\mathbf{d} \)
 \(\mathbf{a} = [2, -3, 5] \) and \(\mathbf{d} = [-3, 4, 7] \)
 c) \(\mathbf{x} = \mathbf{a} + t\mathbf{d} \)
 \(\mathbf{a} = [1, 0, 3] \) and \(\mathbf{d} = [4, -6, 1] \)
 d) \(\mathbf{x} = \mathbf{a} + t\mathbf{d} \)
 \(\mathbf{a} = [7, -5, 11] \) and \(\mathbf{d} = [-1, 0, 7] \)

5. Write a scalar equation of each plane, given its parametric equations.
 a) \(\pi_1 \)
 \(x = 4 + t + 2s \)
 \(y = 3 - 2t - 3s \)
 \(z = -1 + 3t + s \)
 \(\pi_2 \)
 \(x = 5 - 3t + 2s \)
 \(y = 7 + 5t - s \)
 \(z = 2 - 4t + 5s \)

6. For each situation, write a scalar equation of the plane.
 a) has normal \(\mathbf{n} = (7, 9, -1) \) and includes the point \((3, -2, 4)\)
 b) contains direction vectors \(\mathbf{a} = (-1, 2, 8) \) and \(\mathbf{b} = (2, -1, 3) \) and includes the point \((2, -7, 8)\)
 c) parallel to the \(xy \)-plane and includes the point \((7, 8, -1)\)
 d) contains the points \((3, 8, -1), (-8, 9, -4), \) and \((1, -3, 2)\)
 e) contains the line \(\mathbf{x} = [4, -3, -2] + s[3, -2, 1] \) and parallel to the line defined by the parametric equations \(x = 5 + 3s \) and \(y = 1 - s \) and \(z = 2 + 4s \)
 f) contains the point \((2, -1, 8)\) and perpendicular to the line \(\mathbf{x} = [1, -2, -3] + s[5, -4, 7] \)
 g) parallel to the plane \(-3x + 2y + 5z + 8 = 0\) and includes the point \((5, -7, 8)\)
 h) contains the lines \(\mathbf{x} = [4, -1, 0] + s[-2, 1, 3] \) and \(\mathbf{x} = [-2, 4, 3] + s[-6, 5, 7] \)
8.4 Intersections of Lines in Two-Space and Three-Space

1. Solve each linear system in two-space.
 a) \(3x - 5y = -9\)
 \(4x + 5y = 23\)
 b) \(x - 2y = 7\)
 \(3x + 4y = 1\)
 c) \([x, y] = [5, 4] + s[-3, 1]\)
 \([x, y] = [2, 2] + t[2, -1]\)
 d) \([x, y] = [2, 6] + s[2, -3]\)
 \([x, y] = [6, 5] + t[1, 1]\)
 e) \([x, y] = [0, 2] + s[2, 3]\)
 \([x, y] = [7, -4] + t[1, 4]\)
 f) \([x, y] = [2, 3] + s[5, -4]\)
 \([x, y] = [-9, 5] + t[3, 1]\)
 g) \([x, y] = [1, 1] + s[-2, -1]\)
 \([x, y] = [5, -8] + t[4, -3]\)
 h) \([x, y] = [0, 7] + s[3, 0]\)
 \([x, y] = [-2, 3] + t[2, 1]\)

2. Determine if the parallel lines in each pair are distinct or coincident.
 a) \([x, y, z] = [5, -2, -8] + s[-3, 2, 5]\)
 \([x, y, z] = [-4, 0, 2] + t[-3, 2, 5]\)
 b) \([x, y, z] = [16, -8, 4] + s[4, -2, 1]\)
 \([x, y, z] = [4, -2, 1] + t[-4, 2, -1]\)
 c) \([x, y, z] = [-3, 0, -6] + s[-3, 0, -6]\)
 \([x, y, z] = [9, 1, 18] + t[9, 0, 18]\)
 d) \([x, y, z] = [10, -20, -15] + s[4, -8, -6]\)
 \([x, y, z] = [-18, 36, 27] + t[6, -12, -9]\)

3. Triangle ABC is formed from the intersections of the three lines represented by these equations.
 \(\ell_1 : [x, y] = [1, -3] + t[0, 1]\)
 \(\ell_2 : [x, y] = [2, 4] + s[-1, 6]\)
 \(\ell_3 : [x, y] = [2, 3] + r[1, 7]\)
 Find the length of each side of \(\Delta ABC\).

4. Parallelogram ABCD has vertices \(A(-1, -4), B(1, -3), C(6, -6), \) and \(D(4, -7)\). Find the vector equations of its diagonals and the point of intersection of the diagonals.

5. Determine if the lines in each pair intersect.
 If so, find the co-ordinates of the point of intersection.
 a) \([x, y] = [9, -1, 1] + s[-3, 4, 1]\)
 \([x, y] = [-3, 11, 5] + t[-3, 4, 1]\)
 b) \([x, y] = [1, 4, 5] + s[3, 0, -2]\)
 \([x, y] = [9, 4, -3] + s[3, 0, -2]\)
 c) \([x, y] = [1, 0, -3] + t[3, 5, 4]\)
 \([x, y] = [0, -9, -1] + s[-1, 2, -3]\)
 d) \([x, y] = [6, -4, 3] + t[-2, -1, 1]\)
 \([x, y] = [4, -1, 2] + s[2, 1, -1]\)
 e) \([x, y] = [-2, 0, -3] + t[5, 1, 3]\)
 \([x, y] = [5, 8, -6] + s[-1, 2, -3]\)

6. Determine the distance between the skew lines in each pair.
 a) \(\ell_1 : [x, y, z] = [4, -3, 2] + s[2, 7, -1]\)
 \(\ell_2 : [x, y, z] = [-2, 5, 4] + t[-4, 0, 3]\)
 b) \(\ell_1 : [x, y, z] = [-1, 6, 1] + s[-2, 4, 3]\)
 \(\ell_2 : [x, y, z] = [5, 1, 9] + t[3, -2, 4]\)
 c) \(\ell_1 : [x, y, z] = [6, 2, -1] + s[5, 3, -5]\)
 \(\ell_2 : [x, y, z] = [0, 4, 2] + t[2, -1, 1]\)
 d) \(\ell_1 : [x, y, z] = [-4, -1, -2] + s[-3, 0, 2]\)
 \(\ell_2 : [x, y, z] = [-1, -3, 0] + t[0, -5, -3]\)
8.5 Intersections of Lines and Planes

1. In each case, determine if the line and the plane are parallel.
a) \[\ell_1 : \begin{align*} x &= 4 + 2t \\ y &= -t \\ z &= -1 - 4t \end{align*} \]
\[\pi_1 : 3x + 2y + z - 7 = 0 \]
b) \[\ell_2 : \begin{align*} x &= t \\ y &= 2t \\ z &= 3t \end{align*} \]
\[\pi_2 : x - y + 2z = 5 \]

2. In each case, determine if the plane and line intersect. If so, state the solution.
a) \[[x, y, z] = [1, 2, 5] + t[1, -1, 2] \]
\[2x + 6y - z = 5 \]
b) \[[x, y, z] = [6, 11, 1] + t[1, 5, 2] \]
\[x + 3y + 2z - 1 = 0 \]
c) \[[x, y, z] = [9, 8, 3] + t[2, 1, 5] \]
\[z = 0 \]
d) \[[x, y, z] = [4, 2, 6] + t[1, -2, 3] \]
\[2x + 5y - z - 34 = 0 \]
e) \[[x, y, z] = [3, 2, -1] + t[-2, 1, 3] \]
\[x + 2y - 3z = 10 \]
f) \[[x, y, z] = [4, 2, 6] + t[1, -2, 3] \]
\[-4x - 5y + 6z = 34 \]

3. Find the distance between the parallel line and the plane.
a) \(\ell : [x, y, z] = [-5, 0, 1] + t[-2, 4, 7] \)
\[\pi : 5x - 8y + 6z = 0 \]
b) \(\ell : [x, y, z] = [6, 2, -3] + t[3, 0, 1] \)
\[\pi : 2x + 3y - 6z + 4 = 0 \]
c) \(\ell : [x, y, z] = [1, 3, 0] + t[-4, -5, 3] \)
\[\pi : 2x - y + z = 6 \]
d) \(\ell : [x, y, z] = [0, 1, 1] + t[-1, 1, 0] \)
\[\pi : -x - y + 12z = 24 \]

4. Find the distance between the planes.
a) \(\pi_1 : 2x + 2y - z - 3 = 0 \)
\(\pi_2 : 4x + 4y - 2z + 9 = 0 \)
b) \(\pi_1 : 2x - 4y + 2z - 1 = 0 \)
\(\pi_2 : 2x - 4y + 2z - 3 = 0 \)
c) \(\pi_1 : x + 2y + z = 4 \)
\(\pi_2 : x + 2y + z = -8 \)
d) \(\pi_1 : 4x - 12y + 6z + 7 = 0 \)
\(\pi_2 : 2x - 6y + 3z - 6 = 0 \)

5. Find the distance between each point and the given plane.
a) \(P(1, 1, -1) \)
\[x + y - z - 3 = 0 \]
b) \(P(1, 2, 3) \)
\[2x + y - 2z - 4 = 0 \]
c) \(P(7, -3, 2) \)
\[2x - 3z - 1 = 0 \]
d) \(P(0, 0, 0) \)
\[y = 7 \]
e) \(P(1, 2, -3) \)
\[2x - 3y - 6z + 14 = 0 \]
f) \(P(1, 3, -2) \)
\[4x - y - z + 6 = 0 \]
g) \(P(0, 0, 0) \)
\[5x + 3y - 2z - 37 = 0 \]
h) \(P(3, -1, 4) \)
\[6x - z - 11 = 0 \]

6. Determine the distance from point \(P(-2, -1, 1) \) to the plane \([x, y, z] = [4, -1, 6] + t[1, 6, 3] + s[-2, 3, 1] \).
8.6 Intersection of Planes

1. If possible, determine the line through which the planes in each pair intersect.
 a) \(3x - 2y + z = 4\)
 \(6x - 4y + 3z = 7\)
 b) \(2x - 8y - 6z = 2 = 0\)
 \(-x + 4y + 3z = 0\)
 c) \(y = 4x - 2z + 3\)
 \[x = \frac{1}{4}y + \frac{1}{2}z\]

2. For each system of equations, determine the point of intersection.
 a) \(x + y + 2z = 5\)
 \(4x - 3y + z = -8\)
 \(-5x - 2y + 3z = 7\)
 b) \(x + y + 2z = 5\)
 \(4x - 3y + z = -78\)
 \(-5x - 2y + 3z = 27\)
 c) \(x + y - 3z = -1\)
 \(x - y = 3\)
 \(y + 2z = 5\)
 d) \(x + y + 2z = 5\)
 \(4x - 3y + z = 57\)
 \(-5x - 2y + 3z = -8\)
 e) \(2x + y - z = 1\)
 \(x + 3y + z = 10\)
 \(x + 2y - 2z = -1\)
 f) \(x + 4y + 3z = 5\)
 \(x + 3y + 2z + 4 = 0\)
 \(x + y - z = -1\)

3. Determine the line of intersection of each system of equations.
 a) \(x + 2y + 3z = -4\)
 \(x - y - 3z = 8\)
 \(x + 5y + 9z = -16\)
 b) \(x + 2y + 3z = 4\)
 \(2x + 3y + 4z = -5\)
 \(3x + 4y + 5z = -6\)
 c) \(x + y + z = -3\)
 \(2x + 2y - 3z = 4\)
 \(3x + 3y - 2z = 1\)
 d) \(3x - 2y + 5z = 1\)
 \(5x + y - 3z = -4\)
 \(x - 18y + 47z = 23\)
 e) \(3x - 2y + 5z = 1\)
 \(5x + y - 3z = -4\)
 \(x - 5y + 13z = 6\)

4. Determine if each system of planes is consistent or inconsistent. If possible, solve the system.
 a) \(2x + y + z = 6\)
 \(5x - y + 3z = 10\)
 \(x - 3y + z = -2\)
 b) \(4x + 4y - z = 8\)
 \(2x + 2y + z = 5\)
 c) \(x + y - z = 1\)
 \(x + 3y + z = 2\)
 \(x + 5y + 3z = 3\)
 d) \(11x + 10y + 9z = 5\)
 \(x + 2y + 3z = 1\)
 \(3x + 2y + z = 1\)
 e) \(x - 4y - 13z = 4\)
 \(x - 2y - 3z = 2\)
 \(-3x + 5y + 4z = 2\)
 f) \(4x + y + 3z = 7\)
 \(x - y + 2z = 3\)
 \(3x + 2y + z = 4\)

5. Describe each system of planes. If possible, solve the system.
 a) \(-x + y + 3z = 2\)
 \(2x - 2y - 6z = -4\)
 \(-3x + 3y + 9z = 6\)
 b) \(x = 0\)
 \(y = 0\)
 \(x + y = 4\)
 c) \(-x + y + 3z = 2\)
 \(x - 3y + 5z = 6\)
 \(-2y + 8z = 8\)
 d) \(-x + y + 3z = 2\)
 \(-x + y + 3z = 4\)
 \(2x - 2y - 6z = 10\)
 e) \(-x + y + 3z = 2\)
 \(-x + y + 3z = 4\)
 \(x - 3y + 5z = 6\)
 f) \(x = 0\)
 \(y = 0\)
 \(z = 0\)
 g) \(-x + y + 3z = 2\)
 \(2x - 2y - 6z = -4\)
 \(x - 3y + 5z = 6\)
Chapter 8 Review

8.1 Equations of Lines in Two-Space and Three-Space
1. Write the vector and parametric equations of each line.
 a) \(\vec{m} = [3, 5] \), \(P(4, -5) \)
 b) \(\vec{m} = [3, 7, -2] \), \(P(-6, 2, 1) \)
 c) perpendicular to the \(yz \)-plane and through \((0, 1, 2) \)
 d) through the points \(A(4, -5, 3) \) and \(B(3, -7, 1) \)

2. Write the scalar equation for each line.
 a) \([x, y] = [4, -3] + t[-1, 5] \)
 b) \([x, y] = [2, -5] + t[2, -3] \)

3. A line is defined by the equation \([x, y, z] = [-2, 3, 7] + t[3, -2, 5] \). Write the parametric equations for the line and determine if it contains the point \((10, -5, 22)\).

8.2 Equations of Planes
4. Find three points on each plane.
 a) \([x, y, z] = [2, 4, -8] + t[1, 4, 2] + s[4, -5, 2] \)
 b) \(x = 3t - 4s \)
 \(y = 1 - t \)
 \(z = 5 + 2t - 4s \)
 c) \(3x - 4y + z + 12 = 0 \)

5. Write the vector and parametric equations of each plane.
 a) contains the points \(D(1, 7, 2) \), \(E(4, 0, -1) \), and \(F(1, 2, 3) \).
 b) parallel to the \(xz \)-plane and through the point \(Q(2, -3, 4) \).

8.3 Properties of Planes
6. Write the scalar equation of the plane with \(\vec{n} = [2, -4, 3] \) that contains the point \(R(3, -5, 1) \).

7. Write the scalar equation of this plane \([x, y, z] = [2, 1, 4] + t[-2, 5, 3] + s[1, 0, -5] \)

8. Write the scalar equation of each plane.
 a) contains the points \(A(1, 2, 3) \), \(B(2, 3, 4) \), and \(C(4, 5, 5) \)
 b) perpendicular to the \(xz \)-plane with \(z \)-intercept \(-1\)

8.4 Intersections of Lines in Two-Space and Three-Space
9. Determine the number of solutions of each linear system in two-space. If possible, solve each system.
 a) \([x, y] = [-1, -4] + t[1, -1] \)
 \(x = 3 - 2t \)
 \(y = -1 + 3t \)
 b) \(y = \frac{2x - 1}{3} \)
 \(2x + 3y + 1 = 0 \)

10. Determine if the lines in each pair intersect. If so, find the coordinates of the point of intersection.
 a) \([x, y, z] = [3, -2, 3] + t[-1, 1, 2] \)
 \([x, y, z] = [1, -1, 4] + s[1, 1, 4] \)
 b) \([x, y, z] = [3, -3, 0] + t[3, -1, 1] \)
 \([x, y, z] = [4, 0, 4] + s[-1, 1, 1] \)

11. Find the distance between these two skew lines.
 \([x, y, z] = [2, 5, 3] + t[2, 1, -1] \)
 \([x, y, z] = [3, 3, 1] + s[0, 2, 1] \)

8.5 Intersections of Lines and Planes
12. Determine if each line intersects the plane. If so, state the solution.
 a) \([x, y, z] = [2, 5, 3] + t[1, 4, -2] \)
 \(2x + 3y + z = 8 \)
 b) \([x, y, z] = [6, 11, 1] + t[1, 5, 2] \)
 \(x + 3y + 2z - 1 = 0 \)

8.6 Intersections of Planes
13. Find the line of intersection for these two planes.
 \(2x + y - 2z = 4 \)
 \(x + 2y - 3z = 8 \)

14. Solve each system of planes.
 a) \(x + y - 3z = 2 \)
 \(2x - z = 5 \)
 \(7x + 3y - 11z = 16 \)
 b) \(x + 2y - z = -3 \)
 \(4x + y - 3z = -3 \)
 \(2x + y + z = 3 \)
 c) \(x + y + z = 5 \)
 \(-x + y + 2z = -3 \)
 \(2x + 4y + 5z = 0 \)
Chapter 8 Test

For questions 1 and 2, choose the best answer.

1. Which is a vector equation of a line passing through the points (4, 1) and (8, −2)?
 a) \(\mathbf{r} = [4, 1] + t[8, -2] \)
 b) \(\mathbf{r} = [8, -2] + t[4, 1] \)
 c) \(\mathbf{r} = [8, -2] + t[4, -3] \)
 d) \(\mathbf{r} = [4, -3] + u[8, -2] \)

2. Which pair of lines represented by vector equations are coincident?
 a) \(\mathbf{r} = [-2, 5] + s[2, -1] \)
 \(\mathbf{r} = [12, -30] + t[5, -7] \)
 b) \(\mathbf{r} = [4, -1] + s[-3, 5] \)
 \(\mathbf{r} = [-2, 9] + t[-3, 5] \)
 c) \(\mathbf{r} = [0, 0] + s[1, 1] \)
 \(\mathbf{r} = [-1, 1] + t[1, -1] \)
 d) \(\mathbf{r} = [5, 4] + s[2, -4] \)
 \(\mathbf{r} = [9, -8] + t[2, -4] \)

3. A line passes through the point (4, −3) with direction vector \(\mathbf{m} = [1, 5] \).
 a) Determine the parametric equations of the line.
 b) What point on the line corresponds to the parameter value \(t = 2 \)?
 c) Does the line contain the point P(3, −7)?

4. Find a vector equation and the parametric equations of a line through the points A(1, −3, 2) and B(9, 2, 0).

5. Find a vector equation and the parametric equations of a line parallel to the \(y \)-axis and containing the point (1, 3, 5).

6. Write the scalar equation of the line through the point Q(4, −1) with normal \(\mathbf{n} = [3, 5] \).

7. Determine if the lines in each pair intersect. If they intersect, find the intersection point.
 a) \(x = 1 + 3t \)
 \(y = 5t \)
 \(z = 4t - 3 \)
 \([x, y, z] = [0, -9, -1] + s[-1, 2, -3] \)
 b) \([x, y, z] = [1, 2, 1] + s[1, -1, -1] \)
 \([x, y, z] = [0, 2, 5] + s[0, 1, -1] \)

8. Find the distance between these two skew lines.
 \(\ell_1 : [x, y, z] = [1, 3, 7] + t[-1, 1, 2] \)
 \(\ell_2 : [x, y, z] = [4, -2, 1] + s[3, 2, -5] \)

9. Find a vector equation and the parametric equations of the plane that contains the point (3, −5, 1) and is parallel to \(\mathbf{n} = [-5, 2, -5] \).
 \([x, y, z] = [-5, 2, -5] + t[3, -1, 1] + s[1, 1, 1] \).

10. Find a vector equation of the plane containing the points G(4, 1, −1), H(0, 1, 2), and I(1, 1, −1).

11. Find the scalar equation of the plane containing both the line of intersection of the planes defined by \(2x - 3y + z - 2 = 0 \) and \(x + 2y - z + 5 = 0 \) and the point P(1, 0, −2).

12. Determine the scalar equation of the plane with a vector equation
 \([x, y, z] = [3, 0, 2] + t[6, 2, 0] + s[2, 0, -1] \).

13. Determine if the line and the plane intersect. If so, determine the point of intersection.
 a) \([x, y, z] = [4, 6, 0] + t[-1, 2, 1] \)
 \(2x - y + 6z + 10 = 0 \)
 b) \([x, y, z] = [4, -1, 3] + t[3, 3, -4] \)
 \(-5x + 2y - z = -5 \)

14. Determine if the planes in each set intersect. If so, describe how they intersect.
 a) \(x + 2y + 3z = 4 \)
 \(2x + 4y + 6z - 7 = 0 \)
 \(x + 3y + 2z = 3 = 0 \)
 b) \(x + 2y + 3z = -4 \)
 \(x - y - 3z = 8 \)
 \(x + 5y + 9z = -10 \)
 c) \(3x + z + 11 = 0 \)
 \(2x + y + z + 4 = 0 \)
 \(x + y + z - 3 = 0 \)
 d) \(2x - y + 4z = -7 \)
 \(3x - 14y + z = -48 \)
 \(x + 2y + 3z = 4 \)

Name: _______________________________ Date: ________________________
Chapter 8 Practice Masters Answers

Prerequisite Skills

1. a) ______ b) ______

2. a) x-intercept: \(\frac{5}{2}\); y-intercept: 5
 b) x-intercept: –4; y-intercept: 20
 c) x-intercept: 6; y-intercept: –3
 d) x-intercept: 6; y-intercept: 3

3. a) ______ b) ______

4. a) (1, –3) b) (4, 3)

5. a) \((4, \frac{-3}{2})\) b) \((\frac{4}{3}, \frac{-1}{3})\) c) (11, –2) d) (2, 7)

6. a) \(y = 3x + 4\) b) \(y = -\frac{2}{3}x + \frac{16}{3}\)
 c) \(y = \frac{5}{3}x - 4\) d) \(y = \frac{3}{2}x - 10\)

7. a) no b) no c) yes d) yes e) no f) no

8. a) \([-18, 8], [10, 4]\) b) \([3, 5], [73, 6, 23]\)

9. Answers may vary. a) \([2, -4]; [2, 1]\)
 b) \([10, 14]; [-7, 5]\) c) \([9, -6, 15]; [-5, 0, 3]\)
 d) \([4, -14, 2]; [1, 0, -2]\)

8.1 Equations of Lines in Two-Space and Three-Space

1. Answers may vary.
 a) \([x, y] = [9, 4] + t[2, -7]\)
 b) \([x, y] = [3, 7] + t[-1, 5]\)
 c) \([x, y, z] = [8, -11, 2] + t[2, -3, 5]\)
 d) \([x, y, z] = [7, -1, 4] + t[-3, 4, 7]\)

2. Answers may vary.
 a) \([x, y] = [2, 3] + t[5, -2]\)
 b) \([x, y] = [5, -1] + t[-7, 8]\)
 c) \([x, y, z] = [4, -3, 1] + t[-2, 0, 6]\)
 d) \([x, y, z] = [5, 6, -1] + t[-5, -9, 3]\)

3. a) No b) Yes c) Yes d) No

4. a) \(x = 7 + 2t, y = 3 + 5t, z = -1 + 8t\)
 b) \(x = -1 + 8t, y = 4 - 9t\)
 c) \(x = 3t, y = 4 - 4t, z = -7 + t\)
 d) \(x = 7 - 2t, y = 5 + t, z = -4 + 3t\)

5. Answers may vary.
 a) \([x, y] = [2, 1] + t[-4, -5]\)
 b) \([x, y] = [8, 3] + t[-9, 0]\)
 c) \([x, y, z] = [4, 7, 1] + t[3, -2, 1]\)
 d) \([x, y, z] = [0, 5, -3] + t[4, -9, 0]\)

6. a) \(5x + 4y - 11 = 0\) b) \(-7x + 8y + 54 = 0\)
 c) \(-2x + 6y + 10 = 0\) d) \(7x + z + 9 = 0\)
 e) \(-3x + 4y + z - 13 = 0\)

7. Answers may vary. \([x, y, z] = [7, 8, -3] + t[-9, -5, 8]; x = 7 - 9t, y = 8 - 5t, z = -3 + 8t\)

9. a) Yes b) No c) Yes d) No

10. Answers may vary.
 a) \([x, y] = [2, -7] + t[0, 1]\)
 b) \([x, y] = [-2, 4] + t[3, 4]\)
 c) \([x, y] = [3, 0] + t[-3, 5]\)
 d) \([x, y, z] = [1, -7, 3] + t[-4, -1, 2] + s[-2, 0, 4]\)

8.2 Equations of Planes

1. a) Yes b) No c) Yes d) No

2. a) x-intercept: 6; y-intercept: –4; z-intercept: 2
 b) x-intercept: 56; y-intercept: 8; z-intercept: 7
Chapter 8 Practice Masters Answers

b) 14x + 19y − 3z + 129 = 0
c) y = 8 = 0
d) −30x + 39y + 123z − 99 = 0
e) −7x + 9y + 3z + 61 = 0
f) 5x − 4y + 7z − 70 = 0
g) −3x + 2y + 5z − 11 = 0
h) −8x − 4y − 4z + 28 = 0

8.4 Intersections of Lines in Two-Space and Three-Space

1. a) (2, 3) b) (3, −2) c) (−16, 11) d) (4, 3)
e) (4, 8) f) (−3, 7) g) \(\left(\frac{19}{5}, \frac{7}{5} \right) \) h) (6, 7)

2. a) Yes b) Yes c) No

3. \(2\sqrt{37}; 2; 10\sqrt{2} \)

4. \(\overline{AC} = [−1, −4] + s[7, −2], \)\n\(\overline{BD} = [1, −3] + t[3, −4]; \) \(\left(\frac{5}{2}, −5 \right) \)

5. a) Infinitely many solutions b) No
c) (−2, −5, −7) d) No e) (8, 2, 3)

6. a) 2.45 b) 5.15 c) 2.73 d) 2.08

8.5 Intersections of Lines and Planes

1. a) Yes b) No

c) Yes d) No

2. a) \(\left(\frac{5}{3}, \frac{4}{3}, \frac{19}{3} \right) \) b) (4, 1, −3) c) \(\left(\frac{39}{5}, \frac{37}{5}, 0 \right) \)
d) (2, 6, 0) e) (4, 8, 3) f) (5, 0, 9)

3. a) 1.70 b) 5.71 c) 2.86 d) 1.08

4. a) 2.5 b) 0.41 c) 4.90 d) 1.36

5. a) 0 b) 2 c) 1.94 d) 7 e) 4 f) 2.12

6. 0.20

8.6 Intersections of Planes

1. Answers may vary.

2. a) \(\left[\frac{5}{3}, 0, −1 \right] + t\left[\frac{2}{3}, 1, 0 \right] \)

b) Not possible c) Not possible

2. a) (−1, 2, 2) b) (−10, 13, 1) c) (4, 1, 2)
d) (6, −11, 0) e) (1, 2, 3) f) (4, −2, 3)

3. Answers may vary.

a) \(\left[\frac{7}{13}, \frac{17}{13}, 0 \right] + t\left[\frac{1}{13}, \frac{34}{13}, 1 \right] \)

b) \(\left[\frac{7}{13}, \frac{17}{13}, 0 \right] + t\left[\frac{1}{13}, \frac{34}{13}, 1 \right] \)
Chapter 8 Practice Masters Answers

2. B
3. a) \(x = 4 + t, y = -3 + 5t \) b) (6, 7) c) no
4. Answers may vary.
 \([x, y, z] = [1, -3, 2] + t[8, 5, -2]\)
5. Answers may vary.
 \([x, y, z] = [1, 3, 5] + t[0, 1, 0]\)
6. \(3x + 5y - 7 = 0\)
7. a) \((-2, -5, -7)\) b) No
8. 0.19
9. Answers may vary.
 \([x, y, z] = [3, -5, 1] + t[3, -1, 1] + s[1, 1, 1]\)
10. Answers may vary.
 \([x, y, z] = [4, 1, -1] + t[-4, 0, 3] + s[-3, 0, 0]\)
11. \(9x - 10y + 3z - 3 = 0\)
12. \(-x + 3y - 2z + 7\)
13. a) \((10, -6, -6)\) b) \((-8, -13, 19)\)
14. a) Two parallel planes intersected by a third plane b) Intersect in pairs c) Intersect at a point d) Intersect at a line

Chapter 8 Review
1. Answers may vary.
 a) \([x, y] = [4, -5] + t[3, 5]\)
 b) \([x, y, z] = [-6, 2, 1] + t[3, 7, -2]\)
 c) \([x, y, z] = [0, 1, 2] + t[1, 0, 0]\)
 d) \([x, y, z] = [4, -5, 3] + t[-1, -2, -2]\)
2. a) \(5x + y - 17 = 0\) b) \(3x + 2y + 4 = 0\)
3. \(x = -2 + 3t, y = 3 - 2t, z = 7 + 5t; \) no
4. Answers may vary.
 a) \((2, 4, -8), (3, 8, -6), (6, -1, -6)\)
 b) \((0, 1, 5), (3, 0, 7), (-4, 1, 1)\)
 c) \((0, 0, -12), (-4, 0, 0), (0, 3, 0)\)
5. Answers may vary.
 a) \([x, y, z] = [1, 7, 2] + t[3, -7, 3] + s[0, -5, 1]\)
 b) \([x, y, z] = [2, -3, 4] + t[1, 0, 0] + s[0, 0, 1]\)
6. \(2x - 4y + 3z = 0\)
7. \(-25x - 7y - 5z + 77 = 0\)
8. a) \(-x + y - 1 = 0\) b) \(z + 1 = 0\)
9. a) One; \((17, -22)\) b) No solutions
10. a) Yes; \(\left(\frac{3}{2}, \frac{1}{2}, \frac{6}{3}\right)\) b) No
11. 0.74
12. a) \(\left(\frac{5}{6}, \frac{1}{3}, \frac{16}{3}\right)\) b) \((4, 1, -3)\)
13. Answers may vary.
 \([x, y, z] = [0, 4, 0] + t[1, 4, 3]\)
14. a) \([x, y, z] = \left[\frac{5}{2}, -\frac{1}{2}, 0\right] + t\left[\frac{1}{2}, -\frac{5}{2}, 1\right]\)
 b) \((1, -1, 2)\) c) Inconsistent

Practice Test
1. C